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SUMMARY. Most statistical characterizations of a treatment effect focus on the average effect of the treat-
ment over an entire population. However, average effects may provide inadequate information, sometimes
misleading information, when a substantial unit—treatment interaction is present in the population. It is
even possible that a nonnegligible proportion of the individuals in the population experience an unfavor-
able treatment effect even though the treatment might appear to be beneficial when considering population
averages. This paper examines the extent to which information about unit—treatment interaction can be
extracted using observed data from a two-treatment completely randomized experiment. A method for uti-
lizing the information from an available covariate is proposed. Although unit-treatment interaction is a
nonidentifiable quantity, we show that mathematical bounds for it can be estimated from observed data.
These bounds lead to estimated bounds for the probability of an unfavorable treatment effect. Maximum
likelihood estimators of the bounds and their corresponding large-sample distributions are given. The use

of the estimated bounds is illustrated in a clinical trials data example.
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1. Introduction

We begin by considering a clinical trial where a new treat-
ment, 77, is being compared with a standard treatment, T5.
An example of such a trial is discussed in Section 4. Let X
denote what the response would be if a randomly chosen indi-
vidual from the population is subjected to treatment 77 and
Y denote what the response of this individual would be if
subjected to treatment 7%. X and Y are called potential re-
sponses, and the quantity D = X — Y may be defined as the
effect of treatment 77 relative to T for the chosen individual.
What is generally estimated in clinical trials is an average ef-
fect, E(X —Y), where the expectation E(-) is with respect to
the population of interest.

It is not always the case that every subject in the pop-
ulation will experience a beneficial effect due to treatment
T,. We will interpret the phrase “I7 has a beneficial effect”
to mean X — Y > 7, where 7 is some specified constant.
Without loss of generality, we take T to be zero. It is impor-
tant to note that the effect of T} relative to 75 could appear
beneficial when considering the average effect even though a
nonnegligible proportion of individuals could be experienc-
ing an unfavorable effect. In fact, Longford (1999) suggested
that the validity of current clinical trial design and analysis is
greatly eroded when treatment effects are heterogeneous. A
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key parameter, the value of which should be considered when
making decisions concerning the use of a new treatment 11, is
the proportion of the individuals in the population for whom
the value of D = X —Y is negative. We denote this proportion
as P_ = P(D < 0). If P_ is nonnegligible, it becomes impor-
tant to identify the subset of individuals in the population
who actually benefit from T4. For instance, in our discussion
of a clinical trials data set in Section 4 involving epilepsy pa-
tients, we show that the maximum likelihood estimates for
lower and upper bounds for P_ are 5 and 36%, respectively.
We also show how to obtain approximate confidence intervals
for these bounds, which then allows us to test the statistical
significance of these estimates. We then obtain similar bounds
and confidence intervals for P_ conditioned on the value of a
suitable covariate. This latter procedure is particularly useful
in identifying the range of values of the covariate for which
the treatment may be safely recommended.

We will assume that the random vector {(X,Y)} of po-
tential responses follows a bivariate normal distribution (pos-
sibly after a suitable monotonic transformation). The value
of P_ is then nonzero when 0% = var(X — Y) is nonzero,
i.e., when unit—treatment interaction is present. The problem
of estimating P_ is tied to the problem of estimating U%.
If the treatments 77 and T are assigned to a random sam-
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ple of subjects using a two-treatment completely randomized
design, then it is easily seen that neither 0’2D nor P_ is iden-
tifiable. This is due to the fundamental problem of causal
inference (Holland, 1986) since, for each individual unit, we
can observe only one of the two potential responses X or Y
during any single instance.

Issues relating to unit-treatment interaction in the context
of clinical trials have been recognized and reported in the
literature in bioequivalence studies. Bioequivalence between
two formulations of a drug is often determined by estimating
the mean difference in bioavailability using a crossover de-
sign. Ekbohm and Melander (1989) proposed that the focus
on the mean difference is insufficient since a small mean differ-
ence and a narrow confidence interval might be obtained even
though the effects vary considerably among subjects. Sheiner
(1992) has proposed a method of assessing individual bioe-
quivalence for a patient that switches from the standard for-
mulation to the new formulation, and Schall (1995) developed
alternative criteria for assessing individual bioequivalence.

The above methods for assessing individual bioequivalence
make use of crossover designs and restrictive assumptions
about time effects. In a crossover design, even if we can safely
assume absence of carryover effects, there are four potential
responses, (X G ),Y(j)), where § = 1,2 denotes the time pe-
riod at which one would observe a response. Only one of the
two pairs, (X(l),Y(2)) or (X(2),Y(1)), can be observed for
an individual, depending on which sequence of treatment as-
signments the individual received. Similarly, if there are three
periods, then there are six potential responses, two for each
period. Proceeding with an analysis of unit—treatment inter-
action generally requires an additional assumption that the
time effects are zero or, at least, that they are constant across
all units in the population. Further details on this topic can
be found in Gadbury (1998).

In this paper, we propose a method to obtain bounds for 0123
and P_ based on data from a two-treatment completely ran-
domized design where a suitable covariate is also measured.
In the next section, we use the potential response framework
(Rubin, 1974; Holland, 1986) to obtain mathematical bounds
for P_. In Section 3, we present maximum likelihood estima-
tors for these mathematical bounds along with their large-
sample distributions. Results are also provided for bounds on
the probability P—., of an unfavorable treatment effect given
that the value of the covariate is equal to z. We illustrate our
method using a previously published clinical trials data set
and then conclude with a discussion.

2. Bounds for 0% and P- = P(D < 0)

Suppose an i.i.d. sample of potential responses, (X;,Y;) i =
1,..., N, is available from a bivariate population of poten-
tial responses with mean (ux,uy )", variances 0§< and a%,,
and correlation parameter pxy. We assume throughout that
there is no interference between units (Cox, 1958, p. 19). The
distribution of treatment effects has mean pup = px — py
and variance var(X — Y) = 0% = 0% + 0% — 20x0ypxy-
The difference between the sample means of the two treat-
ments is easily shown to be an unbiased estimator of up. As
stated earlier, 0% and P_ are nonidentifiable. However, when
covariate information is available for each unit in the sample,
useful bounds for these parameters may be computed.
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Consider the situation where a covariate, Z, can be ob-
served on the population units. The population of poten-
tial responses may now be viewed as a trivariate popula-
tion represented by the random vector (X,Y, Z) with mean

(ux,my,pz)T and variance matrix
Ox PXYOXOYy PXZ0X0Z
2
PXYOXOTY oy Praoyos | (1)
PXZ0X0z PyzOyoz Oz

Let (X;,Z1;), i = 1---n1, denote the observed responses to
treatment T, and the value of the covariate for the ni units
assigned to the new treatment group. Then (Yj, Zy;), j =
1---ng, are the observed responses to T» and the value of the
covariate for the no units assigned to the standard treatment
group.

The positive definiteness of the correlation matrix (1) im-
plies that pxy must lie in the interior of the interval bounded
by the two numbers px zpy z £ [(1—p% 7)(1 —p%/z)]lﬂ. This
observation leads to the following lower bound, L, and upper
bound, U, for a%):

L= a§< + a%/
—20x0y {pxzpyz + \/(1 - P%gz) (1 - P%/Z)}

2

Uzagg +a%/

—20x0y {pxzﬂyz - \/(1 —p%z) (1- P%fz)} .
(3)

If the trivariate distribution of potential responses is normal,
then bounds for P_ are given by P, = ®(—up/LY?) and
Py = ®(—up/ Ut/ %), where ®(a) is the standard normal cu-
mulative distribution function evaluated at a. In the next sec-
tion, we give the maximum likelihood estimators (MLEs) of
L, U, Pr, and Py along with their large-sample distributions
using a trivariate normal population.

3. Maximum Likelihood Estimation
The likelihood function of observed data is of the form
2, f(zi, zli)H?il f(y;, 225), which involves eight unknown
parameters. It is convenient to consider the set of parameters
(Lord, 1955b) ux,uy,pz,02,0x.2,0v.7,Bx, By, where
o%.z=0% (L-rkz),
oYz =% (1- P%fz) )
Bx =oxpxz/oz,
By =oypyz/oz.
The MLEs of these eight parameters are given in Lord (1955a,

1955b). Rewriting the lower and upper bounds given by equa-
tions (2) and (3) as

L=(ox.z —oy.z)*+ (Bx — By)o%
U=(ox.z+0y.z2)°+(Bx — By)’o%

and using Lord’s results, it follows that the MLEs of L and
U are given by

L=(sx.z —sy.z)* + (bx —by)’s%
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U= (sx.z+sy.z)?+ (bx — by)?s%,

where s% ., = s%(1 — %) and 5% , = s2(1 —r%,). The
statistics sx, rxz, and bx are the usual sample standard
deviations, correlation, and regression coefficient for the n;
observations in the treatment group; sy, ryz, and by are
the corresponding quantities for the ny observations in the
control group; and sz is the sample standard deviation of the
observed covariate values over all N individuals in the study.
The MLE for pp is ip = Z—§—bx (21 —Z)+by (22— %), where
Z and Z; are observed sample means of the response and the
covariate for the n1 individuals in the treatment group and ¢
and Zp are the corresponding quantities for the control group.

The MLEs for P, and Py are P, = ®(—ip/L'/?) and
PU = ®(—pp/ oY/ 2) The asymptotic joint distribution of
(P, Py)t is normal with mean equal to (Pr, Py)T and vari-
ances and covariances given by

—_ 2 2 r ~
var(ﬁL) = m%@_ {V&r(ﬂD) + :U'DZZ2(L)}

— ’ 2 var(U
var(Py) = @_(“DT/W)_)_ {var(ﬂD) + /‘D4U2(U)}

¢ (~up/VI) ¢ (~up/VT)
VLU
9 F
X {var(ﬂD) + HD*CEL)}III(ULIQ} )

cov(Pr, Py) =

where ¢(a) is the standard normal density evaluated at ¢ and

var(L) = (ﬁx By) oy
+ 2(Ux.z —oy.2)? (%.z/m + 0%.7/n2)
+4(Bx — By)* (c%.z/m1 + 0% 7/n2) %
var(0) = 2 (x — fy)"o%
+2(0x.z +0v.z)” (0%.2/m + 0¥.7/n2)
+4(Bx — By)? (c%.z/m + 0% 7 /n2) 0
cov(L,0) = = (8x — Br) %
+2(0%.z —0%.2) (c%.z/m — 0¥.2/n2)
+4(Bx — By)? (0% .2/m1 + 0% 2 /n2) 0
var(ip) = (0%.2/m + 0% z/ma2) + - (Bx — By)?6%.

These expressions are derived using the results in Lord
(1955a). They are useful for computing asymptotic standard
errors and approximate confidence intervals for Py, and Py .
If observed data provide some evidence that Sx # By, one
might argue that this information could be used to predict
positive (or negative) treatment effects on the basis of co-
variate values. What is actually predicted in such a case is
the mean treatment effect conditioned on the covariate value.
For a given covariate value, say Z = z, there is a subpop-
ulation of individual treatment effects at Z = z with mean
equal to up., = px — py + (Bx — By )(z — pz) and variance
equal to 0}, = Ug(-Z +0y.z —20x.7 0y.z pxy.z- The
partial correlation coefficient, pxy.z, cannot be estimated
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from observed data, but it must lie in the interval -1,1].
A lower bound L, and an upper bound U, for UD ., are then
L, = (o6x.z7 —oy.z)? and U, = (6x.z +oy. 2)2, and cor-
responding MLEs are given by L, = (sx.z — sy. Z) and
Uz =(sx.z + 8y.Z)2.

Lower and upper bounds for the conditional probability
P.,=PD<0|Z =2z are P, = ®(—pp.,/LY?
and Py, = ®(—up.,/UL’?). The MLEs of Py., and Py.,
are Pr., = ®(—fip../L}/*) and Py., = ®(—jp../U'*). The
asymptotic joint distribution of (Py,.,, Py. z)T is normal with
mean equal to (PL‘Z,PU‘Z)T and variance and covariance
given by

(¢ (_ND-z/\/L_z))2

var(Pp.,) = I.
2 var(L,
X {var(ﬂD,z) + “DZ—ME(‘L—)}
2
var(Py.,) = G (_HD Z/\/U_Z))

13 var(U)
Lot + om0

¢ (~up2/VLz) ¢ (- P'Dz/\/U_z)
VL. U:

5 .
X {var(ﬂD.z) + Kp.;cov(Lz, Us) }

cov(Pr.,, Py.,) =

b

4L, U,
where
var(L,) = 2(0x.z — Jy.z)2 (agg‘z/m + a%.z/ng)
ar(Uz) = 2(ox.2 + 0y.2)° (0k.2/n1 + 0% .7 /n2)
)

cov(Lz,Uz) =2 (U§(~Z - 012/.2) (U§(~Z/n1 —0%.7/n2

~ 2 2 Z
var(fip.,) = (UX‘Z/’IH +ay.Z/n2) (1 + (a—“)) .
Z
We now illustrate the computation and use of the bounds in
an example.

4. Example

We consider data from a clinical trial of 59 individuals with
epilepsy (Thall and Vail, 1990). Patients were randomized into
two groups receiving either the antiepileptic drug progabide or
a placebo as an adjuvant to standard chemotherapy. Seizure
rates were recorded for each subject at 2-week intervals over
an 8-week period. The response that we use for illustrative
purposes is the total seizure count over the 8-week period.
The covariate Z is a baseline seizure rate over the 8-week
period prior to treatment assignment. Thall and Vail (1990)
omitted one patient in the treatment group as an outlier and
we do the same.

We analyzed these data using analysis of covariance, and
diagnostics suggested transforming the seizure count data by
taking logarithms (after first adding one to accommodate
an individual with a zero response). Therefore, all results
in this example are reported in transformed units. Analysis
of covariance produces a point estimate for a mean treat-
ment effect equal to —0.414 and a 95% confidence interval of
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(—0.733,—0.095), suggesting a beneficial decrease in average
number of seizures due to the progabide treatment.

The MLEs of the relevant parameters are ip = —0.415,
&7 = 0.709, 6x.7 = 0.687, 6y.z = 0.460, Bx = 0.995, and
,f;’y = 0.839. MLEs of the bounds for op are 1Y? = 0.253
and U'/2 = 1.152. The proportion of the population experi-
encing an unfavorable effect (i.e., an increase in the number of
seizures) due to the new treatment is estimated to be between
Pr, =0.051 and Py = 0.359.

Assuming (X,Y, Z) is normal and that there were no mea-
surement errors in observed responses, the MLE of P, sug-
gests at least 5% of the population will experience an in-
crease in seizures due to the progabide treatment and the
MLE for Py suggests this percentage could be as high as
36%. Approximate 90% confidence intervals for Py, and Py
are (—0.116,0.218) and (0.275,0.444), respectively. The con-
fidence interval for P, indicates that there is insufficient ev-
idence in the data to conclude P_ is positive. On the other
hand, the interval for Py indicates that P_ could be as high
as 0.275 to 0.444 with 90% confidence.

There is no evidence in the transformed data that Sx #
By, but for illustration, we estimated the conditional bounds
for P_., evaluated at the MLE for uz, i.e., at 2 = 3.12. The
MLES of the two bounds are Pf, , = 0.034 and Py, = 0.358,
and 90% confidence intervals for Py, , and Py, are given by
(—0.102,0.171) and (0.274,0.443), respectively. Again, there
is insufficient evidence in the data to suggest that P_.; is
positive, yet the proportion experiencing a negative effect in
this subpopulation could be as high as 0.274 to 0.443 with
90% confidence. These calculations can be repeated for any
other specified value of Z.

The bounds op and P_ were estimated from the existing
clinical trial data and approximate confidence intervals for
them were easily computed. The practitioner could now use
this additional information together with available subject-
matter knowledge to decide whether or not the treatment
could be recommended for any given individual.

5. Discussion and Future Work

We proposed that, when individual treatment effects are the
quantities of primary importance rather than a population
average treatment effect, attention should be given to the es-
timation of P~ = P(D < 0). This probability is invariant
to data transformations as long as the original measurements
were made on a meaningful scale and the allowable transfor-
mations are monotonic.

It is well known that unit—treatment interaction has conse-
quences that can be checked using sample data (Cox, 1992).
Observe that U% can be written as

oh =(0x.z —0v.z)’ +20x z0v.2(1 - pxv.z)
+(Bx — By)0%, (4)

where pxy.z is the conditional correlation of X and Y, given
Z. This correlation cannot be estimated using observed data,
but the other terms in equation (4) can be. The three con-
ditions, ox.z = oy.z, Bx = Py, and pxy.z = 1, are all
required for ‘72D to equal zero. The two bounds for 0123 that
we used to derive MLEs for P;, and Py result from letting
pxy.z equal 1 and —1, respectively. This suggests that a
Bayesian approach using appropriate prior distributions for
pxv.z might lead to tighter bounds. Bounds for P_ using a
Bayesian framework will be reported elsewhere.
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Finally, the only unfavorable treatment effects that we con-
sidered in this paper were negative effects with respect to the
primary response variable. Adverse treatment effects could
occur in one or more secondary response variables as well.
A study of unfavorable individual effects in multivariate re-
sponse data will be discussed in future work.

RESUME

La plupart des estimations statistiques de l'effet d’un traite-
ment porte sur l'effet moyen du traitement sur une popula-
tion. Cependant, des effets moyens peuvent fournir une infor-
mation inappropriée et parfois trompeuse quand existe dans
la population une importante interaction traitement—unité
expérimentale. Il est méme possible qu’'une proportion non
négligeable des individus subisse un effet défavorable du traite-
ment méme si le traitement peut paraitre bénéfique lorsque
l’on considere les moyennes sur la population. Ce papier ex-
amine dans quelle mesure une information sur l'interaction
traitement—unité peut étre extraite des données d’un essai
randomisé de deux traitements. Une méthode pour utiliser
I'information sur une covariable disponible est proposée. Bien
que l'interaction traitement—unité soit non-mesurable, nous
montrons que des bornes mathématiques peuvent étre es-
timées a partir des données observées. Ces bornes aménent &
des bornes estimées pour la probabilité d’un effet défavorable
du traitement. Des estimations du maximum de vraisemblance
de ces limites et de leur distribution sur grands échantillons
sont données. L’utilisation de ces bornes estimées est illustrée
a partir de I’exemple d’un essai clinique.
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