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| INTRODUCTION

¢ an initial focus on “fold change™ (cf.. Reference 1), researchers have recog-
ed the need to quantify statistical significance of estimated differences in genetic
ion between two or more treatment groups using microarrays [2]. In light of
plication has been recognized as a critical element of the design of microarray
dies [3]. Replication may imply spotting a single gene multiple times on one array
- :_mlllliplc tissue samples that each have their own array (e.g.. [5.6]). We consider
flatter and use the term “sample size™ to refer to number of arrays in a study. For
fher discussion of levels of replication see Simon and Dobbin [7].

Replicate arrays in an experiment provide for statistical tests of differential expres-
pat the level of a specific gene |8-10]. Regardless of the test used, the result is
ameasure of ““certainty” (e.g.. a p-value) in rejecting a null hypothesis of no dif-
fatial expression. However, in microarray studies there are questions that remain
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78 DNA Microarrays and Related Genomics Techniques

to be answered and new ones that emerge. Examples are as follows:

—

At what threshold is a p-value statistically significant?

Of those genes declared differentially expressed. what proportion are truly

differentially expressed?

3. Of those not so declared, what proportion are not differentially expressed?

4, Of the genes that are truly differentially expressed, what proportion do we
expect to detect in a particular study?

5. What role does sample size play in all of these questions?

19

Obraining answers to these questions can be a challenging task due to small sample
sizes that are typical in many microarray experiments, If testing for a difference in
mean genetic expression at a specific gene using a parametric test. the validity of a
p-value may be questioned when sample sizes are small. Nonparametric tests also
have difficulties since randomization distributions or bootstrapped distributions can
be course with small samples. and p-values cannot attain small enough values to be
“statistically significant.”

This chapter presents techniques that facilitate answers to guestions 1 to 5. We
consider quantities of interest in a microarray study shown in Table 5:1. Two of
these quantities are the expected number of genes that are (1) differentially expressed
and will be detected as “significant™ at a particular threshold and (2) not differen-
tially expressed and will not be detected as such, denoted D and A, respectively.
The other two quantities are the expected number of genes that are differentially
expressed but are not so declared (B) and are not differentially expressed but are
so declared (C). Proportions based on these quantities, defined in Gadbury et al.
[11] are:

D . A D
TP= ——. TN=_—— EDR=_—— (5.1)

where cach is defined as zero if its denominator is zero. TP is true positive: TN, true
negative: and EDR, the expected discovery rate, which is the expected proportion of
genes that will be declared significant at a particular threshold among all genes that

TABLE 5.1
Quantities of Interest in Microarray Experiments

Genes for which there is  Genes for which there is

no real effect a real effect
Genes not declared A B
significant at designated
threshold
Genes declared significant C D

at designated threshold

Note: A + B+ €+ D = the number of genes analyzed in a microarray experiment.
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ily differentially expressed. EDR sounds like but is not identical to the notion of
Itis an “expected proportion” and there may be no gene — specific test with
identical 1o the EDR. Moreover, TP and TN are expected proportions and
. be no specific gene that has a “true positive probability” (or true negative)
{or TN). The focus of this chapter is to discuss techniques to estimate TP,
EDR from microarray experiments, and to present methods that evaluate
sample size in bringing these proportions to desired levels. Traditional
culations for planning future sample sizes to detect gene specific effects
ly problematic with microarray data since information about variances and
gful effect sizes are typically absent [ 12].

TP, TN, AND EDR IN MICROARRAY EXPERIMENTS

apter it is the interplay between threshold, sample size, and the proportions
5.1 that is of interest. An example is shown in Figure 5.1. The figure
d on an “experimental situation” (details discussed later) with two treatment
ual size. n = integers 2 to 10, 20, 40 and a threshold at which a gene is
d differentially expressed equal to 0.1. 0.05. 0.01. 0.001. 0.0001. and 0.00001
jon a logarithm (base 10) scale. The figure shows that as sample size increases.
s EDR. However, EDR is smaller for smaller thresholds since the criteria for
"-.-:__n.; a gene differentially expressed are more strict (this assumes that there are
that are truly differentially expressed and it is our ability to detect them

0.8 -
0.6 -
EDR
04—
0.2
=
Log(Threshold)

10

Sample size

BURE 5.1 Three-dimensional plot showing an expected discovery rate (EDR) for varying
7 and threshold (on logarithm base 1) scale).
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as such that is in question). Using larger thresholds. (and thus increasing EDR) comes
at the cost of reducing TP (not shown in Figure 5.1).

The five questions in the introduction and the quantities in Equation 5.1 have
interested others and have led to a body of literature on this topic. Much of the
literature in this area names three quantities of interest that are related to those in
Equation 5.1. First is the false discovery rate (FDR) that is analogous to 1 — TP, a
false negative rate (i.e.. | — TN), and what some have called “power,” analogous
EDR (e.g., [13]). though some have called “power™ to be one minus the probability ofa
false negative, interpreting “false negative™ as a type [T error [ 14]. Motivating the need
for these results can be illustrated by considering Question | from the introduction.
The answer may seem straightforward enough were it not for the many thousands
of simultaneous tests that are conducted in a microarray experiment. Some of the
traditional corrections for multiple comparisons such as the Bonferroni technique
were not developed for this context and are far too conservative, particularly when
results from an initial study might be used to plan follow-up studies, that is, too
small a threshold may “miss”™ many interesting genes worthy of further attention.
Less conservative methods have been developed that. rather than controlling for an
experiment-wise error, controls instead the expected proportion of falsely rejected
null hypotheses [15-17].

The approach to estimating the above described quantities from microarray
data has generally fallen into two (at least) areas: permutation based methods, and
model based methods involving Bayesian posterior probabilities. All have generally
recognized the importance of sample size in bringing these quantities to desired levels.

5.3 SAMPLE SIZE AND SOURCES OF UNCERTAINTY IN
MICROARRAY STUDIES

It is well known that when testing a single null hypothesis. small sample sizes have
lower power to detect an effect vs. larger samples. Test statistics computed using
small samples have a larger variance and this variance makes it more difficult to “'see”
a true effect. A type | error may be quantified using a p-value and a type Il error. at
a particular effect size. quantified using power calculations. An emerging paradigm
in microarray studies is that investigators may be willing to tolerate a proportion of
type I errors in favor of not “missing” any important genes that do have differential
expression. In an ideal experiment all genes declared differentially expressed would
be ones that have a true differential expression due to the treatment condition, TP = 1
or FDR = 0. Those genes that are ruled out as differentially expressed are also cor-
rectly determined. TN = 1. Finally, when planning and conducting an experiment,
one would hope to “expect to discover” all of the important differentially expressed
genes (high EDR). In practice, these quantities depend on variance of test statistics
and some have used estimates of TP and TN to reflect uncertainty in a microarray
experiment (e.g.. low TP implies more uncertainty). The sample size has a direct
cffect on measures of TP. TN, and EDR in a microarray experiment. Figure 5.2 shows
a diagram depicting a hypothetical two-dye microarray experiment. Only two arrays
are shown (due to space restrictions) in each of two treatment groups. Issues related to




81

Yara sheuw om Jo sdnosd Jwaunean om) ojur pap AP SA oy g uatiuadxa Aeimosdiua 94p-z [eanaod£y v jo S 7S 3N

Y¥g NEg Nig ey i Vg )
¥
3]
2 <
i d 3 .
°f % 5 n
. ¥ ” L
e —— iha YEg g ey Wy 9
Lo w 5 1
Yo ¥, (s)egs ~ 6 o Iy 3
. 1]
o i ._ =
L Bif £y 5] w
na
2 g 22 o 122 -
9 e, 0 "eRw wy < ) i en
— o <) n@
I e W,
d i (s)es’s = ) e
g 11Bg ___...v; ey A I i 9
(td)y ! J— e e—— =
= _ iz e =
= ¥og g Yo Yy A b A o
s |
g o T
L= ’ : . . | o5 z 2
=3 ot ) (“s)ag'es D 1 n n
= : L 9 Yhe Yhy \2y )
= : " 5 Y] =
s iy ®
5 - B
) -
i) hd | ('s)eg'ls i i = . 3
Jm.\ _,/ L - .x. ) o] &_ .n.u m._w
=
& i
e itg g ..J_.?, Ehyyy 2hy = in
A L) 2 )
2 Vg 1hhg Vil ik m
E S L A




82 DNA Microarrays and Related Genomics Techniques

background correction and normalization are not considered. On each array, k genes
are spotted. Figure 5.2 expands on the second gene. G, on each array. The r; and
g; denote pixel intensities at each spot on the red and green channels, respect-
ively. Pixel level data can be used to evaluate measurement (technical) errors in
an experiment [18] but this level of experimental variance is not considered here.
We assume that the pixel intensities are summarized into an expression level for the
ith experimental unit (array) for G». denoted Y.

The expression levels for the second gene within each treatment group are then
summarized by some statistic, often using a mean and variance. Then a “test” for
differential expression at each gene can be constructed using some measure of dif-
ferential expression and a standard error, 3. Se(s). allowing computation of a test
statistic, T, that may be a contrast in an ANOVA model. A “p-value” results from
the test statistic being compared against a null reference distribution. This reference
distribution may be obtained via permutation or bootstrap procedures or an assumed
model form for T. Finally all tests produce a distribution of p-values. p = py,..., Pis
that can be modeled by some density function, f(p:#), a concept used in recent
papers [19-21].

Figure 5.2 helps in the following discussion that reviews various approaches to
computing or estimating the proportions (or analogous quantities) in Equation 5.1.
Pepe et al. [22] used rank based statistics to order genes by degree of observed dif-
ferential expression. Their measure of variability was the probability that a gene, g,
is ranked in the top ¢ genes, denoted by Py(c) = P[Rank(g) < ¢]. This probability
may be thought of as analogous to TP in Equation 5.1, that is. it is a measure of
“certainty” that a gene will reappear as important (i.e.. the top ¢ genes. where ¢ is
selected by the researcher) in follow-up studies. They used a bootstrap routine o
estimate this probability where the resampling unit was at the level of the tissue
(array). Their example data set included two groups of 30 and 23 arrays making the
bootstrap a useful technique to compute quantities associated with sampling variab-
ility. A simulation technique was proposed for sample size calculations (e.g., power
computations) where the original data set served as a population model for a bootstrap
routine. The technique has limitations with small sample sizes where the bootstrap
distribution would be too coarse to be useful for probability estimates. An advantage
of the approach is that the correlation structure among genes is preserved since the
entire array is the sampling unit.

Tusheret al. [23 ] ranked genes by order of differential expression using a modified
t-statistic where the denominator was inflated by a small constant 1o compensate for
genes with very small variance. A selected threshold, A. then determined genes that
were differentially expressed. Uncertainty was measured by an estimated false discov=
ery rate (FDR). This was computed by permuting arrays across treatment conditions,
computing the “z-statistic,” ordering the genes by these statistics, and counting how
many genes appeared above (or below) the threshold. Since the permutation across.
treatment conditions mimics the situation of “no treatment effect,” this number of
genes was an estimate of a number falsely declared. This number was recorded for
all permutations and then averaged across permutations. This average divided by the
number originally declared differentially expressed is an estimated FDR, analogous
to 1 — TP in Equation 5.1.
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et al. [24] used an ANOVA model that may include array, dye. treatment,
effects to model the gene expression values, for example, ¥j; in Figure 5.2.
d a residual bootstrap technique [25] to simulate a reference distribution for
istic and to obtain standard errors of contrasts, but they did not directly deal
€ proportions in Equation 5.1. Wolfinger et al. [14] employed mixed models
parametric assumptions to model gene expression measurements, and they
pgest a method for power analysis. The method involved specification of an
data set, variance components, fitting the model to the exemplary data
§ variance components at their specified values. computing standard errors
afied contrasts. and computing power using a noncentral r-distribution and a
false positive rate.
on and Tibshirani [26] modeled the test statistics arising from a Wilcoxon test.
odel was of the form, fr(z) = pofo(t) + p1fi(r) where fi(r) is the distribution
g test statistics under the null hypothesis (i = () meaning no differential expres-
i) or under the alternative (i = 1 meaning there is differential expression). The

=), 1, are prior probabilities of no differential expression or differential expres-
ively. A use of Bayes theorem resulted in posterior probabilities such as
pbability that a gene is differentially expressed given the test statistic. analogous
1P in Equation 5.1. They fitted a model using empirical Bayes methods. They also
fided comparisons between their method and that of Benjamini and Hochberg's
fiscovery rate [15].
and Whitmore [ 13] considered a table like Table 5.1, and investigated sample
irements on types I and II error probabilities. “Power” was equalto | — P
Ml error), which is analogous to our quantity EDR in Equation 5.1. They defined
as an expected proportion of falsely rejected null hypothesis. analogous to
P, Their defined type 1 error was C/(A + C). where A and C are cell entries
e 5.1. They also presented a Bayesian perspective on power and sample size
'mixture models fitted to summary statistics of differential expression. where the
probability. p;. was an “anticipated™ proportion of truly differentially expressed
Their focus, however, was on evaluating required sample size and power for
summaries of differential expression involving computation of a null variance.
size, and specification of an expected number of false positives. They noted.
icular. that specification of a null vaniance is problematic since it requires
dge of the inherent variability of the data in the planned study. They also
ended their results to situations where there may be more than two treatment groups
interest is in determining differential expression among several treatment
4 N,

'Pan et al. [6] used a r-type statistic to quantify differential expression. However,
eshold to declare significance was obtained by creating a reference distribution
2 a mixture of normal distributions. This model. when fitted to a “pilot™ data

could then be used to assess the number of replicates required to achieve desired
at a given significance level. The fitted model was considered fixed. a type I
was specified. and power computed for any specified effect size. for example.
ardized difference in mean expression levels between two groups.
+Zein et al. [5] considered sample size effects on pairwise comparisons of different
s and discussed the role of both technical and biological variability. Actual data
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sets were used to develop parameter specifications for simulated data sets. They
used the term sensitivity as analogous to EDR in Equation 5.1, and specificity that
is analogous to TP. They evaluated the effect of varying sample size on these two
quantities for various simulated data sets and using different types of statistical tests
for differential expression, for example, r-tests and a rank-based test.

Many other contributions have been made where quantities related to those in
Equation 5.1 were computed to refiect uncertainty in conclusions, or o assess power
and the role of sample size in ensuring power rises 1o acceptable levels. A slightly
different approach was taken by Pavlidis et al. [27] who used several real data sets
1o assess the effect of replication on microarray experiments. Mukherjee et al. [28]
estimated sample size requirements for a classification methodology. Van der Laan
and Bryan [29] developed a technique that incorporates sampling vanability into a
cluster type analysis and provide results for sensitivity, proportion of false positives,
and a sample size formula.

Not discussed thus far regarding Figure 5.2 are some results based on the dis-
tribution of p-values resulting from statistical tests on all genes. Results based on
this distribution are valid assuming that a valid test was used to produce a p-value.
A distribution of p-values can be modeled and this distribution can provide estimates.
of the proportions in Equation 5.1 as well as shed light on the answers to questions 1
to 5, posed in the introduction. We now expand on this idea and indicate that further
details are available in Allison et al. [19]. Gadbury et al. [20]. and Gadbury et al. [11].
First, however, we highlight some history regarding the use of p-values as random
variables.

5.4 ON THE DISTRIBUTION OF p-VALUES

An often overlooked characteristic of a p-value is thal. since it is computed from
the sample. it too is a random variable [30]. The earliest work on the stochastic
properties of a p-value may have been by Dempster and Shatzoff [31]. Other work
has subsequently appeared in Schervish [32] and Donahue [33]. A key result related
to our work here is the well-known probability integral transform that states that a
cumulative distribution function evaluated at a random variable is a uniform random
variable. Applied to p-values, this states that a test statistic. under a null hypothesis of
no differential expression will produce a uniformly distributed p-value on the interval
(0.1) as long as the distribution of the test statistic is known. We will refer to this.
latter condition as using a test that produces a “valid p-value.”

Schweder and Spjotvoll [34] may have been the first to consider this in the con-
text of multiple testing. They produced the “p-value plot” as a means to (visually)
quantify the number (proportion) of false null hypotheses. This used the idea that if
several null hypotheses were not true, then there should be a larger number of “small”
p-values than would have been expected if all null hypotheses were true. Hung et al.
|35] derived the exact distribution of p-values under the alternative hypothesis and
under various distributional assumptions for the data. They showed that, for their
specific cases. these distributions depended on the effect size (under the alternative)
and sample size. Parker and Rothenberg [36] suggested modeling a distribution of
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s using a mixture of a uniform distribution and one or more beta distribu-
he beta distribution being chosen for its flexibility in modeling shapes on the

et al. [19] adopted this idea from Parker and Rothenberg [36] and
a method for modeling the distribution of p-values from microarray experi-
Anidea later echoed in Pounds and Morris [21]. they used the model to estimate
ns in Equation 5.1. Yang et al. [37] also noted how a distribution (histogram)
ues will have a “peak” near zero when many null hypotheses are not true. but
d not directly model this distribution. Next, we review the method from Allison
9] and discuss a procedure by which sample size effects can be assessed based
method. Details of the latter are in Gadbury et al. [11].

. A MIXTURE MODEL FOR THE DISTRIBUTION OF
p-VALUES

ollowing example is used to illustrate the mixture model method of Allison etal.

Human rheumatoid arthritis synovial fibroblast cell line samples were stimulated
tumor necrosis factor-a where one group (n = 3) had the Nf-x B pathway taken
y a dominant negative transiently transfected vector and the other group (n = 3)
da control vector added.

‘Figure 5.3 shows a histogram of p-values obtained from two sample r-tests of a
hypothesis H, : jt1; = pt2; vs. a two tailed altemnative where j2;; is a population
expression for gene j in treatment group i and where j = 1...., =
genes. A p-value from any valid statistical test can be used such as a test of a
ptrast from an ANOVA model.

—— Muixture of a uniform and a beta distribution
—-—-- A single uniform distribution

0.0 0.2 0.4 0.6 0.8 1.0
p-value from Fest

FIGURE 5.3 Distribution of continuous p-values obtained from two tailed r-tests on 12.625
genes from the rheumatoid arthritis data set, and the fitted mixture model is shown by the curve.
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FIGURE 5.4 Distribution of discrete p-values obtained from two tailed randomization tests
on 12,625 genes from the rheumatoid arthritis data set.

il =

Gadbury et al. [20] described a procedure based on randomization tests for a
difference in expression at each gene. The result is a discrete distribution of p-values
with only 10 distinct values. The distribution shown in Figure 5.4 shows a similar
shape as the continuous distribution if Figure 5.3. The number of p-values equal to 0.1
was 2975 vs. an expected 1262.5 if there were no differences in genetic expression
for any genes. As a comparison, the number of genes with p-values obtained from
the r-tests that were less than or equal to 0.1 was 2797, in close agreement to the
randomization test results. Thus the randomization test can served as a “sensitivity
check™ for other testing procedures. The discrete distribution in Figure 5.4 can be
modeled using a multinomial distribution but the information that can be gleaned
from it is less rich than that available in a continuous model.

Returning to Figure 5.3, many more p-values than expected under the global
null hypothesis cluster near zero. A mixture of a uniform plus one beta distribu-
tion captures this shape. Allison et al. [19] describe a parametric bootstrap method
that can be used to estimate the number of beta distribution components that are
required to model the shape. In many of the data examples they studied, they found
that a uniform and one beta distribution was sufficient, as was the case for this
example.

The fitted mixture model in Figure 5.3 is the solid line, represented by an equation
of the form

&
Ffip) = n[i{; + M Bpar.s)), pice(0.1), i=1,....k=12625 (5.2)
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‘where B(p:ir.s) is a beta distribution with shape parameters r and 5, and 4 =
11— ). Parameters of the model were estimated using maximum likelihood. For these
“data, 4) is estimated as (0.395, suggesting that 39.5% of the genes are differentially
‘expressed — an unusually strong signal and not representative of the many microarray
data sets we have analyzed. The estimates for r and s are 0.539 and 1.844, respectively.
‘The p-values were obtained from z-tests using pooled degrees of freedom. Using a
‘Welsh correction on the 7-test. for comparison, the estimated iy, r, s are 0.384, 0.686.
“and 1.944, respectively. The value of the maximum log-likelihood was 1484 vs. zero,
“which would be the value for a strictly uniform distribution (i.e., a distribution with
no signal). The log-likelihood thus serves as a measure of relative model fit.

Calling the expression in Equation 5.2 a likelihood presupposes independence of
p-values, but Allison et al. [19] also used simulations to examine the extent to which 'I
the log-likelihood would be affected by moderate dependence among genes. Gadbury
“etal. [20] did the same for the resulting distribution of discrete p-values obtained from J
randomization tests. [t is challenging to model dependence among gene expression '
Ulevels due to the small sample sizes and very large number of genes. Allison et al.
'9] and Gadbury et al. [20] used a multivariate normal distribution with a mean
and variance structure similar to the data and the correlation structure implemented
ough a block diagonal equicorrelation matrix with a parameter p occupying the
off-diagonal entries of the blocks. The expressions levels were assumed independent
across different blocks. The correlation p varied from 0.0 to 0.8. Moderate correlation
was considered to be values of p around 0.4 with stronger dependence at 0.8. Negative
correlation was not feasible with this approach since the correlation matrix was not
positive definite for large negative values of p. In simulations where no genes were
‘differentially expressed. the variance of the sampling distribution of the maximum
log-likelihood increased with p. This suggests that for data fitted with the mixture
model where the value of the log-likelihood is not large, some caution must be exer-
cised since the value could be attributed to some genes being differentially expressed.,
or no genes differentially expressed but correlated instead. The effects of correlated
expression levels on results from statistical methods for microarray data have been
given limited attention in the literature and is a subject of continuing investigation.

Immediately available from the fitted mixture model, Equation 5.2, are maxi-
mum likelihood estimates of TP. TN, and EDR. Suppose a threshold r is selected
n- determines genes that are declared differentially expressed ( p-value < 1) or not
\p-value > 7). Then at this threshold.

i|B(T:;‘.3‘] ﬁ— ;..{)'ll —T)

§ j\nf + J:|B(T:.'-'.3)‘ - j.[]ll'l —T) +;.|[l — B(z:7.5)]

. EDR = Blrit. 5

(5.3)

where B(z:r.5) is the cumulative distribution function of a beta distribution with
estimated shape parameters. evaluated at 7. Choosing = 0.05 resulted in TP=0.790
nd TN =0.671, and EDR = 0.287. The high estimate of TP results from the strong
nal present in this cell line dataset. The low estimate of EDR is attributed to small
sample size (3 per group). The bootstrap can be used to estimate standard errors and
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confidence intervals for TP. TN, and EDR. Sampling variability, in this context, is
vanability associated with a realization of k p-values from a model of the form given
by Equation 5.2. The p-values from the r-tests were resampled 1000 times, each time
fitting a mixture model to the bootstrap sample. An approximate 95% confidence
interval for TP is (0.768. 0.812), for TN it is (0.608, 0.734), and for EDR it is (0.254,
0.320). As a comparison, the estimate of TP using the method of Tusher et al. [23]
on these data was (.77 using a threshold of A = 1.2, In the next section we review
a method from Gadbury et al. [11] that evaluates, for a given model fitted to actual
data, the effect of threshold selection and sample size on estimated TP, TN, and EDR.

5.6 PLANNING FUTURE EXPERIMENTS: THE ROLE OF
SAMPLE SIZE ON TP, TN, AND EDR

Gadbury et al. [11] used a computational procedure to consider the effect of threshold
and sample size on TP, TN, and EDR. The procedure assumes that an experiment
has been conducted with N = 2n units divided into two groups of equal size and
a mixture model £=(p) (Equation 5.2) fitted to the distribution of p-values obtained
from a r-test of differential expression on each gene. A p-value from any valid test
could be used as long as it can be back-transformed to the test statistic that produced
it. Equal sample sizes in each group is convenient but is not required. The model is
fitted using maximum likelihood and the estimated parameters are now considered
fixed and equal to the true values, conceptually similar to Pan et al. [6].

A random sample p* = pi,....p} is generated from the mixture model f*(p),
with the parameters estimated from the preliminary sample. The outcome of a
Bernoulli trial first determines whether a p; is generated from the uniform component
with probability 49, or the beta distribution component with probability 4 = 1 —4q.
From this sample of p-values, a set of adjusted p-values, p™ = pi*.....p", is
created by transforming the p? that were generated from the beta distribution to the
corresponding f-statistic 17 and computing a new p-value. p;*. using a new sample
size, n*. The p; generated from the uniform distribution are left unchanged.

From the new p™*, estimates of TP. TN, and EDR can be computed. To illustrate
this. let Z = {I,2,....k} be a set of indices corresponding to the genes in the study,
and let T be a subset of Z representing the set of genes that have a true differential
expression across two experimental groups, that is, T € Z. Let

; I, ieT . )
I (1) = 0, i¢T fori:—= L.z k

then Zf=1 Iy (i) represents the number of genes under study that are truly dif-
ferentially expressed. unknown in practice but known and calculable in computer
simulations.

A gene is declared to be differentially expressed if the p-value (calculated on
observed data) from a statistical test falls below a predetermined threshold (t). The
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resulting decision function, when equal to 1, declares a gene ditferentially expressed:

1 s
Yl = {0 D=

0 pi=1
where x; is a vector of length N representing the data for the ith gene. i = 1,...,k,
hereafter abbreviated as ;.

Estimates for the values in Table 5.1 that can be calculated in computer simulation
experiments are given by

&
A= Z(l — Yl = L (D). B= 31 — ¥l
i" - .!'Tl (5.4]
C= Z will — L) (D], D=3 iliry(i)
i=]

=1

The values A, B, C, and D in Table 5.1 are defined using the expectations of the
estimates in Equations 5.4, which are taken with respect to the fitted mixture model.
These are,

E(A) =A =kio(l — 7). E(B)=B=k\(l —B(r:r.5))
E(C) = C = khot,E(D) = D = kM B(t:r,5)

It can be seen that

. D A D
TP'= ——; [IN=-—— EBR=
c-=D A+B B+ D

defined in Equation 5.1, have the same form as TP.TN, and EDR in Equation 5.3,
‘estimated model parameters are taken as fixed. In simulations, Gadbury et al. [11]
proposed estimating TP, TN, and EDR using

e D == A —— D
= e oy TNi= o EDR = e (55:'
C+D A+B B+D o

where the quantities in Equation 5.4 are readily available in the simulations.

The process is repeated M times thus obtaining M values of TP, TN, and EDR
given in Equation 5.5. The value of M l% chosen sufficiently large so that Monte
@arlo estimates of E [TP] E [TN] and E [EDR] can be accurately estimated using the
dverage over the M values of TP, TN, and EDR. This expectation is with respect
1o the simulation process. Since the model has been fixed. sampling variability in
the estimates in Equation 5.5 is due to simulation uncertainty rather than model
uncertainty. This is analogous to traditional power calculations where a desired effect
size is fixed, a sample size is fixed, and then power computed at that effect size and
sample size using some statistical model or distribution. Thus, standard errors in
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the averages of the M values of TP.TN, and EDR are generally small. The above
described process is repeated for different values of #* and 7.

5.7 SAMPLE SIZE AND THRESHOLD SELECTION:
ILLUSTRATING THE PROCEDURE

Effects of sample size and threshold selection are evaluated using the above procedure
on the rheumatoid arthritis cell line data set described earlier. Results are shown in
Figure 5.5. The graph (a) in Figure 5.5 shows the minimum and maximum number
(from M = 100 simulations) of 12,625 genes that were determined to be differentially
expressed at three chosen thresholds for different sample sizes. The graph labeled (b)
plots the average of 100 TP values for the three thresholds at each sample size. Graphs
(¢) and (d) show the average of the 100 TN and 100 EDR values, respectively.

The number declared significant (graph a) was plotted since it reveals key inform-
ation about TP. At very small sample sizes and thresholds. very few (and sometimes
zero) genes are declared significant. This quantity estimates C + D in Table 5.1. the
denominator of TP. TP is defined to be zero when C + D is zero; estimales, TP, are
not expected to be very accurate when C + Dis a small positive number. This effect
is seen in the plots for TP at small sample sizes. The TP plot also shows that the lines
representing different thresholds cross over each other. Values of TP will be higher
at lower thresholds as long as the sample size is large enough to detect differentially
expressed genes.

Estimates of the quantities A+ B and B+D (i.¢., the denominators of TN and EDR,
respectively) are more accurate at small sample sizes and small thresholds because A
and B are usually large. However, estimates of EDR are small at these n and 7 because
D is small. So lines do not cross over in plots for EDR because a smaller threshold
makes it more difficult to detect differentially expressed genes regardless of sample
size. In the actual data set, n = 3, and one can see that the estimated EDR is quite
small. One can also see from the procedure and resulting graph that EDR values rise
to more acceptable levels as sample sizes approach around 20 arrays per treatment
group.

5.8 DISCUSSION

The introduction posed five questions that are of interest in high-dimensional studies
such as using microarrays. This chapter reviewed several approaches taken by others
and provided some details of a technique based on mixture models and the use of
simulated experiments from a given model. Answers to questions 2 to 4 are available
using this technique. As far as questions 1 and 5 regarding threshold and sample size,
the answer may very well be “it depends.” We saw that there are trade-offs for choice
of threshold. A very small threshold may miss many important genes (low EDR) but
of the genes that are declared differentially expressed. one can be fairly certain that
they are real (high TP). The described procedure relies on an initial study where a
mixture model was fit to data and this model then becomes a standard for evaluating
sample size effects on hypothetical future studies.
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An interesting twist to this idea, mentioned earlier. was given by Pavlidis et al.
[27]. They identified several publicly available microarray data sets with varying
sample sizes (6 arrays per group to 50 per group). Using the larger studies. they
could sample subsets of arrays thus simulating a smaller experiment and evaluating
the stability of results using small samples. They concluded that results become
somewhat unstable with 5 or fewer replicates but that 10to 15 replicates often provides
reasonable stability. though the numbers are data dependent. In the simulations of Zein
et al. [5], they noted that it was not possible to simultaneously constrain both false
positive and false negative rates to reasonably low values when sample sizes were
only 8 per group. Pepe et al. [22], as indicated earlier, had a rather large study and
they assessed “power” by subsampling from the arrays in the actual study. but their
smallest sample size was 15 arrays per group. Wolfinger et al. [14] noted that power
can be very low even with replication but that the appropriate design can reduce
variance of estimates and increase power substantially.

Several of the methods discussed throughout indicate the usefulness of a pilot
data set 1o obtain effect sizes, variance estimates, and model estimates to plan follow-
up studies by calculating estimates of quantities similar to those in Equation 5.1.
As more microarray experiments are completed and as future funds are allocated to
allow larger experiments, more knowledge will become available on the relationship
between sample size and key criteria attesting to the importance of results as measured
by quantities such as TP and TN. Traditional notions of significance level and power
may be less than optimal for high dimensional studies. The approach outlined herein,
as well as approaches proffered by others. provide alternative tools to the researcher
to help plan follow-on investigations using microarrays.
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